Média móvel ponderada exponencialmente Você pode pensar em sua lista de observação como tópicos que você marcou. Você pode adicionar tags, autores, tópicos e até resultados de pesquisa à sua lista de exibição. Desta forma, você pode facilmente acompanhar os tópicos em que você está interessado. Para ver sua lista de observação, clique no link QuotMy Newsreaderquot. Para adicionar itens à sua lista de exibição, clique no link quotadd para assistir listquot na parte inferior de qualquer página. Como adiciono um item à minha lista de exibição Para adicionar critérios de pesquisa à sua lista de vigilância, procure o termo desejado na caixa de pesquisa. Clique no quot. Adicione esta pesquisa ao link da minha lista de vigilância na página de resultados da pesquisa. Você também pode adicionar uma tag à sua lista de observação procurando a tag com a quottag da diretiva: tagnamequot onde tagname é o nome da tag que você gostaria de assistir. Para adicionar um autor à sua lista de observação, vá para a página de perfil dos autores e clique no quot. Adicione este autor ao meu link de lista de exibição no topo da página. Você também pode adicionar um autor à sua lista de observação, indo para um tópico que o autor postou e clicando no quot. Adicione este autor ao meu link de lista de exibição. Você será notificado sempre que o autor fizer uma postagem. Para adicionar um tópico à sua lista de observação, vá para a página de discussão e clique no botão. Adicione este tópico ao meu link de lista de exibição no topo da página. Sobre newsgroups, Newsreaders e MATLAB Central O que são newsgroups Os newsgroups são um fórum mundial aberto a todos. Grupos de notícias são usados para discutir uma grande variedade de tópicos, fazer anúncios e trocar arquivos. As discussões são enfiadas ou agrupadas de forma a que você possa ler uma mensagem postada e todas as suas respostas em ordem cronológica. Isso facilita o acompanhamento do tópico da conversa, e para ver o que já foi dito antes de publicar sua própria resposta ou fazer uma nova postagem. O conteúdo do grupo de notícias é distribuído por servidores hospedados por várias organizações na Internet. As mensagens são trocadas e gerenciadas usando protocolos de padrão aberto. Nenhuma única entidade ldquoownsrdquo os newsgroups. Existem milhares de grupos de notícias, cada um abordando um único tópico ou área de interesse. O MATLAB Central Newsreader publica e exibe mensagens no grupo de notícias comp. soft-sys. matlab. Como leio ou publico nos newsgroup Você pode usar o leitor de notícias integrado no site do MATLAB Central para ler e publicar mensagens neste newsgroup. MATLAB Central é hospedado por MathWorks. As mensagens postadas no MATLAB Central Newsreader são vistas por todos usando os grupos de notícias, independentemente de como eles acessam os newsgroup. Existem várias vantagens em usar o MATLAB Central. Uma Conta Sua conta do MATLAB Central está vinculada à sua Conta MathWorks para acesso fácil. Use o endereço de e-mail de sua escolha O MATLAB Central Newsreader permite que você defina um endereço de e-mail alternativo como seu endereço de postagem, evitando a desordem na sua caixa de correio principal e reduzindo o spam. Controle de spam A maioria dos spam de newsgroup é filtrada pelo MATLAB Central Newsreader. As mensagens de marcação podem ser marcadas com um rótulo relevante por qualquer usuário conectado. As tags podem ser usadas como palavras-chave para encontrar arquivos específicos de interesse, ou como uma maneira de categorizar suas postagens marcadas. Você pode optar por permitir que outras pessoas vejam suas tags, e você pode visualizar ou pesquisar outras marcas de tag, bem como as da comunidade em geral. A marcação fornece uma maneira de ver as grandes tendências e as idéias e aplicações menores e mais obscuras. Watch lists A configuração de listas de vigilância permite que você seja notificado das atualizações feitas nas postagens selecionadas pelo autor, thread ou qualquer variável de pesquisa. As notificações da lista de vigilância podem ser enviadas por e-mail (resumo diário ou imediato), exibidas em Meu leitor de notícias ou enviadas via feed RSS. Outras formas de acessar os newsgroups Use um leitor de notícias através de sua escola, empregador ou provedor de serviços de internet Pague pelo acesso de grupo de notícias de um fornecedor comercial Use o Google Groups Mathforum. org fornece um leitor de notícias com acesso ao grupo de discussão comp. soft sys. matlab Execute o seu próprio servidor. Para obter instruções típicas, consulte: slyckng. phppage2 Selecione sua documentação do país Este exemplo mostra como usar os filtros de média móvel e o reescrever para isolar o efeito de componentes periódicos da hora do dia em leituras de temperatura por hora, bem como remover o ruído indesejado de uma linha aberta - Medição da tensão de controle. O exemplo também mostra como alisar os níveis de um sinal de relógio, preservando as bordas usando um filtro mediano. O exemplo também mostra como usar um filtro Hampel para remover grandes outliers. Motivation Smoothing é como descobrimos padrões importantes em nossos dados, deixando de lado as coisas que não têm importância (ou seja, o ruído). Usamos a filtragem para executar esse alisamento. O objetivo do suavização é produzir mudanças lentas de valor, de modo que seja mais fácil ver tendências em nossos dados. Às vezes, quando você examina dados de entrada, você deseja suavizar os dados para ver uma tendência no sinal. No nosso exemplo, temos um conjunto de leituras de temperatura em Celsius tomadas a cada hora no Aeroporto de Logan durante todo o mês de janeiro de 2011. Note que podemos visualizar visualmente o efeito que a hora do dia tem nas leituras de temperatura. Se você está interessado apenas na variação diária da temperatura ao longo do mês, as flutuações horárias só contribuem com o ruído, o que dificulta a discernição das variações diárias. Para remover o efeito da hora do dia, gostaríamos agora de suavizar nossos dados usando um filtro de média móvel. Um filtro de média móvel Na sua forma mais simples, um filtro médio móvel de comprimento N leva a média de cada N amostras consecutivas da forma de onda. Para aplicar um filtro de média móvel a cada ponto de dados, nós construímos nossos coeficientes de nosso filtro de modo que cada ponto seja igualmente ponderado e contribua 124 para a média total. Isso nos dá a temperatura média em cada período de 24 horas. Retardamento do filtro Observe que a saída filtrada está atrasada em cerca de doze horas. Isto é devido ao fato de nosso filtro de média móvel ter um atraso. Qualquer filtro simétrico de comprimento N terá um atraso de (N-1) 2 amostras. Podemos explicar esse atraso manualmente. Extraindo diferenças médias Alternativamente, também podemos usar o filtro de média móvel para obter uma melhor estimativa de como a hora do dia afeta a temperatura geral. Para fazer isso, primeiro, subtrair os dados suavizados das medidas horárias de temperatura. Em seguida, segmente os dados diferenciados em dias e leve a média em todos os 31 dias do mês. Extraindo o envelope de pico Às vezes, também gostaríamos de ter uma estimativa variável suave de como os altos e baixos do nosso sinal de temperatura mudam diariamente. Para fazer isso, podemos usar a função de envelope para conectar altas e baixas extremas detectadas em um subconjunto do período de 24 horas. Neste exemplo, garantimos que haja pelo menos 16 horas entre cada extremo alto e extremo baixo. Nós também podemos ter uma noção de como os altos e baixos estão tendendo tomando a média entre os dois extremos. Filtros médios em movimento ponderados Outros tipos de filtros médios móveis não pesam cada amostra de forma igual. Outro filtro comum segue a expansão binomial de (12,12) n Este tipo de filtro se aproxima de uma curva normal para valores grandes de n. É útil para filtrar o ruído de alta freqüência para pequenos n. Para encontrar os coeficientes para o filtro binomial, convolve 12 12 com ele próprio e, então, convoluciona a saída com 12 12 um número de vezes prescrito. Neste exemplo, use cinco iterações totais. Outro filtro um pouco semelhante ao filtro de expansão gaussiano é o filtro exponencial de média móvel. Este tipo de filtro de média móvel ponderada é fácil de construir e não requer um grande tamanho de janela. Você ajusta um filtro de média móvel ponderada exponencialmente por um parâmetro alfa entre zero e um. Um maior valor de alfa terá menor alisamento. Amplie as leituras por um dia. Selecione seu país. Tenho uma matriz de séries temporais para 8 variáveis com cerca de 2500 pontos (10 anos de sexta-feira) e gostaria de calcular a média, a variância, a aspereza e a curtose em média móvel. Digamos quadros 100 252 504 756 - Gostaria de calcular as quatro funções acima em cada um dos quadros (time-), diariamente - de modo que o retorno para o dia 300 no caso com 100 dias de quadro seria significante Kurtosis de desvio de variância do período dia 201-dia300 (100 dias no total). e assim por diante. Eu sei que isso significa que eu obteria uma saída de matriz, e o primeiro número de quadros seria NaNs, mas não consigo descobrir a indexação necessária para fazer isso. Perguntou Mar 24 14 às 0:07 Esta é uma questão interessante porque acho que a solução ideal é diferente da média do que é para as outras estatísticas da amostra. Eu forneci um exemplo de simulação abaixo que você pode trabalhar. Primeiro, escolha alguns parâmetros arbitrários e simule alguns dados: Para a média, use o filtro para obter uma média móvel: pensei inicialmente em resolver este problema usando conv da seguinte maneira: Mas como PhilGoddard apontou nos comentários, a abordagem do filtro evita a Necessidade do loop. Observe também que Ive escolheu para tornar as datas na matriz de saída correspondem às datas em X, então no trabalho posterior você pode usar os mesmos índices para ambos. Assim, as primeiras observações do WindowLength-1 no MeanMA serão nan. Para a variação, não consigo ver como usar qualquer filtro ou conv ou mesmo uma soma executória para tornar as coisas mais eficientes, então, em vez disso, eu executo o cálculo manualmente em cada iteração: Poderíamos acelerar as coisas um pouco explorando o fato de que já temos Calculou a média móvel média. Basta substituir a linha de loop dentro do acima com: No entanto, duvido que isso faça muita diferença. Se alguém pode ver uma maneira inteligente de usar o filtro ou o conv para obter a variável da janela em movimento, fique muito interessado em vê-lo. Eu deixo o caso de skewness e kurtosis para o OP, uma vez que eles são essencialmente o mesmo que o exemplo de variância, mas com a função apropriada. Um ponto final: se você estivesse convertendo o acima em uma função geral, você poderia passar em uma função anônima como um dos argumentos, então você teria uma rotina média móvel que funcione para escolha arbitrária de transformações. Final, ponto final: para uma seqüência de comprimentos de janela, basta fazer um loop sobre todo o bloco de código para cada comprimento de janela. Sim, a função de filtro é realmente melhor para o meio - mas eu queria fazer isso para várias funções diferentes, não só a média. Acabei de publicar minha resposta porque funcionou para mim e pensei que poderia ajudar alguém também. Ndash Dexter Morgan 15 de abril às 12:40
No comments:
Post a Comment